Focal adhesions control cleavage furrow shape and spindle tilt during mitosis
نویسندگان
چکیده
The geometry of the cleavage furrow during mitosis is often asymmetric in vivo and plays a critical role in stem cell differentiation and the relative positioning of daughter cells during development. Early observations of adhesive cell lines revealed asymmetry in the shape of the cleavage furrow, where the bottom (i.e., substrate attached side) of the cleavage furrow ingressed less than the top (i.e., unattached side). This data suggested substrate attachment could be regulating furrow ingression. Here we report a population of mitotic focal adhesions (FAs) controls the symmetry of the cleavage furrow. In single HeLa cells, stronger adhesion to the substrate directed less ingression from the bottom of the cell through a pathway including paxillin, focal adhesion kinase (FAK) and vinculin. Cell-cell contacts also direct ingression of the cleavage furrow in coordination with FAs in epithelial cells-MDCK-within monolayers and polarized cysts. In addition, mitotic FAs established 3D orientation of the mitotic spindle and the relative positioning of mother and daughter centrosomes. Therefore, our data reveals mitotic FAs as a key link between mitotic cell shape and spindle orientation, and may have important implications in our understanding stem cell homeostasis and tumorigenesis.
منابع مشابه
Deregulation of HEF1 impairs M-phase progression by disrupting the RhoA activation cycle.
The focal adhesion-associated signaling protein HEF1 undergoes a striking relocalization to the spindle at mitosis, but a function for HEF1 in mitotic signaling has not been demonstrated. We here report that overexpression of HEF1 leads to failure of cells to progress through cytokinesis, whereas depletion of HEF1 by small interfering RNA (siRNA) leads to defects earlier in M phase before cleav...
متن کاملLoss of spatial control of the mitotic spindle apparatus in a Chlamydomonas reinhardtii mutant strain lacking basal bodies.
The bld2-1 mutation in the green alga Chlamydomonas reinhardtii is the only known mutation that results in the loss of centrioles/basal bodies and the loss of coordination between spindle position and cleavage furrow position during cell division. Based on several different assays, bld2-1 cells lack basal bodies in > 99% of cells. The stereotypical cytoskeletal morphology and precise positionin...
متن کاملDelay of HeLa cell cleavage into interphase using dihydrocytochalasin B: retention of a postmitotic spindle and telophase disc correlates with synchronous cleavage recovery
The molecular signals that determine the position and timing of the cleavage furrow during mammalian cell cytokinesis are presently unknown. We have studied in detail the effect of dihydrocytochalasin B (DCB), a drug that interferes with actin assembly, on specific late mitotic events in synchronous HeLa cells. When cleavage furrow formation is blocked at 10 microM DCB, cells return to interpha...
متن کاملThe N-terminus of the long MLCK induces a disruption in normal spindle morphology and metaphase arrest.
We have shown previously that only the long myosin light chain kinase (MLCK), which is the predominant MLCK isoform expressed in nonmuscle cells, localizes to the cleavage furrow. To further examine the in vivo localization of the long MLCK in HeLa cells and the mechanisms responsible for kinase targeting during the cell cycle, we examined the distribution of the endogenous kinase and construct...
متن کاملA nematode kinesin required for cleavage furrow advancement
Dividing cells need to coordinate the separation of chromosomes with the formation of a cleavage plane. There is evidence that microtubule bundles in the interzone region of the anaphase spindle somehow control both the location and the assembly of the cleavage furrow [1-3]. A microtubule motor that concentrates in the interzone, MKLP1, has previously been implicated in the assembly of both the...
متن کامل